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TECHNICAL NOTE 3385

THEORY OF THE JET SYPHON

By B. Szezeniowski
SUMMARY

A new approach to the theory of the mixing of two currents in an
injector 1s presented which deals with an incompressible ideal fluid.

The equations of continuity and of motion of a single flow (assumed
one dimensional), although well known, are demonstrated in order to
facilitate the understanding of the modified theory.

Without advencing any new hypotheses as to the physical nature of
the mixing phencmena, the theory shows new potentiaslities in an appro-
priate shaping of the form of the wells of the mixing zone so as to
improve the jet-syphon efficiency beyond that heretofore theoretically
predicted. This improvement is shown in spite of the fact that no math-
ematical opbimum conditions theoretlcally exist.

A few examples of ways to lmprove Jjet-syphon efficiency are indi-
cated. Application of the new theory to the case of a constant-pressure
ejector thrust augmenter is presented in an appendix.

INTRODUCTION

The theory set forth in this report is an attempt to glve a new
viewpoint on the problem of the mixing of two currents in an injector
(i.e., jet syphon), as compared with the theories now existing and
accepted. This new approach ls intended to clear up some ambiguity in
the presentation of the problem in certain textbooks and papers on
hydraulics in which the interpretation of the law of conservation of
momentum seems to be oversimplified, in that the externsl forces (more
particularly, reaction of the channel wall) are disregarded in con-
structing the mathemstical expression for the balance of forces and
quentities of motion in the general case of flow with varisble pressure

along the mixing zone.

The actual phenomensa occurring in the chamme]l during the mixing are
very complicated and cannct be explicitly elucidated without the intro-
duction of certain physical hypotheses concerning the behavior of the
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microscopic particles of the liquid. It 1s not intended to glve 1In this
paper such a detailed physical explanstion of these actual phenomena. A
few general deductions as to the behavior of the current, 1ts velocity,
pressure, and so forth, may be drawn, however, from the general princi-
ples of conservation (of mass, of energy, and of momentum), if some addi-
tional abstractive assumptions are made. This is done in the section
"Introduction to New Theory of Jet Syphon." An outline of certain prin-
ciples of hydrodynamics, namely, the equatlion of continulty and the ecgua-
tlon of motion, is presented first to facilitate the understanding of the
modified theory.

This work was done at the Ecole Polytechnique (University of Montreal)

and hes been made available to the National Advisory Committee for Aero-
nautics for publicatlon because of 1ts general interest.

SYMBOLS
A cross-sectional area of channel, sq £t
a acceleration, ft/se02
c veloeity, f£t/sec -
Et ot total (kinetic plus pressure) energy of fluid, ft-1b
AEtot total energy loss due to shock
F external mass force, 1b

terrestrial acceleration, ft/sec?

H pump totsl head, ft

W
n welght output ratio; ny = ;—f%fg— for primary stream and
1 2 :

np =1 - ny; for secondary stream

P statle pressure, lb/sq Tt

r radius, ft

S,X,1 channel length, ft

ds Anfinitesimal element of channel length

Jy
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Th thrust, 1b

(Th) thrust of single (primery) stream, 1b

W weight output, lb/sec; w; for primary and wp for secondary
stream

X potential of mass forces, £t2/sec?

2 elevation in gravitational field, ft

7 specific weight, lb/cu f%

external propulsive efficiency

(nex) externsal propulsive efflclency of a single stream
o

Ty injector efficiency

P density, 7/g

T tine, sec

w angulsr veloecity, sec™L

Dimensionless coefficients:

5 =
Nex
€ =
(“ex)o
¢ Th

]
EiI
[~

[¢]
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0 =cy /cl

0’ = 1 \[—;: Og = °\f-w(in appendix only)
Ve, R,

Subscripts:

o] atmospheric conditlons

1 initilal cross section of mixing zone

2 final cross section of mixing zone

> diffuser exit

Buperscripts:

4 primary stream

" secondary stream

EQUATION OF CONTINUITY OF A SINGLE FLOW

The following theory is based on the assumption that the flow 1s
one dimensional, that is, that there is only one geometrical dimension,
the length of the flow path. This unique geometrical coordinate 1s, how-
ever, considered as curvilinear; that is, the "axis" of the flow may be
shaped arbltrarily in the three-dimensional space, provided the flow vein
is sufficlently fine to consider the pressure and the velocity uniform in
the whole arbitrarily chosen cross section of the vein. Such an approach
ig, of course, not entirely exact, but it has given fully satisfactory
results in dealing with the thermodynamic problems of stationary nozzles
and diffusers.

The other assumption mede herein is that the flulid 1s ideal, that
1s, nonviscous and involving no friction at the channel wells.

Conslder & certain flow vein whose axis is arbitrarily shaped in
space (fig. 1). ILet its cross section A be varisble wlth the length s
of the flow path and with time. Cubting thils veln at any point whatsoever,
perpendicularly to the axls, with two planes A and B which are &t an infil-
nitely smell distance ds from each other and supposing that in plane A
the cross sectlion is Aj; the pressure, P; the veloeity, e¢; and the den-
sity, pj; one has in the B plane:
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Cross sectlon: A+ éé ds
ds
Pressure: p + gg ds
s

Velocity: c + S ds
ds

dp
Density: + 22 ds
ensity P S5

where the cross section is measured in square feet; the pressure, in
pounds per squere foot; end the velocity, in feet per second; and the
density is

p=17/g

where 7, In pounds per cubic foot, 1s the specific welght; and
g = 32.174 ft/sec2 is the terrestrial ecceleration.

During the infinitely small time interval &r +the amount pAc dr

of the mass of fluld enters the veln element ds through cross sec-
tion A, while ancther smount of mass

dp )( OA )( oc

+ — ds}{A + = dsllc + == 88} &r
(p ds ds Js )

leaves the veln element through the other cross section B.

On the other hand, during the same time interval dr, the mass of
the vein sector ds has increased from ph ds tTo

(pi—égéh)(Ai—éé(h) ds
ot T

One has, therefore, arrived, under the condition of the continuity of
flow, st the equality
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pAc dT - |p + ég dsjtA + éé dsijic + 93 ds ] dr
os os os

as the given amount of mass cannot change.

Neglecting the infinitely small gquantlties of the second and third
order and introducing the definition of veloeity

c = ds/dﬁ

there 1s obtained

-a%-(Ap) + -:—S(Acp) =0 (1)

which is the mathematical form of the principle of continuity of flow
and 1s ecalled the equation of continuilty.

Particular cases may be easily deduced from equation (1). For
instance, if the fluid 1s incompressible, p = Constant, and therefore

S—TA~+ %(Ac) = 0

Another particular case occurs when the channel cross section is
constant, that 1s, when A = Constant, and therefore

do , O _
57+ 55(ep) =0

If, at the seme time, the fluild 1s incompressible, one obtailns
dcfds = 0; that is, the velocity ¢ 1s only a function of time (i.e.,
at a given moment it is constant through the whole channel).

A further possible particular case is the steady flow, which is
independent of time; that is,

3 (aep) = L(rep) =
—a;(Acp) = dLE}(Anp) =0

s
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Ac
Acp = £§Z = Constant = _ié:\_?’o_ (2)

If, in additlon, the fluid 1s incompressible, then 7 = Constant = 74,
and one gets

Ac = Constant = A.e, (22)
EQUATION OF MOT'ION FOR A SINGLE FIOW

The principle of conservation of momentum (i.e., of quantity of
motion) resulting from Newton's law which states that the force equals
the product of mass and acceleratlon ensbles one to obtain the equastion
of motion.

The forces acting on sector ds of the vein are as follows:

(1) On the one hand, the resultant of pressure forces exerted on
cross section A and on the lateral surface; this resultant force simply
equals the product of the pressure p eand of the projection of cross
section A and the vein lateral surface on the plane of cross section B;

that is,
p(A + _B_A_ ds)
ds
(2) On the other hand, ome has, similarly
2 2

(p+-§§ds)(ﬁ.+%%ds)

and the resultant force in the positive direction of s 1is

CLAP Y - )( LY ),e_.a_P.
P(A+Bsds) (P+Bsds A+asds Aasds

Apart from that, the external force F, called mass force, may also
act on the sector ds. This force is bound with the mess of fluid and
it always possesses a certain potentisl X such that the component of
massg force in any direction n, reckoned per the unit of mass, equals the
partial derivative of X in this direction, that is, JX/dn. Ome, there-
fore, has in the direction of motion s:

drs=g—§pAas
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and the resultant force will be

AP =X -
Py -~ A<D ds = phds - A<Eds

The acceleration of the element ds in the direction of motion is

de _Qeds Qe _,98e, 3¢
& =& os dr * 3 = © ds ¥ oT

and the mass of the element 1s pA ds; therefbre, the equation of motion
(also called Bernoulli's equation) will be '

K _ 4P gy = (?2:‘2)
PA ds os A Os ds = ph dsic Os * oT

or

XK _Lx_ %, (3)

§§ ds - g dp = ¢ de
Os
and, after integration,
dp c® '
X - %/C37.= 5 + Constant (h)

Among the mess forces, the followlng three may, above all 6thers,
actually occur:

(a) Gravitational force
(b) Centrifugal force
(e) Shock force

All these are "external" forces, in contrast with possible "“internal”
mass forces (e.g., viscosity).
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The gravitational force is caused by the gravitational fleld of the
earth and 1t actually cccurs in heavy, incompressible liquids (e.g.,
water). Its presence 1s independent of the character of motion.

The centrifugel force may occur only in rotational motion or in a
combination of rotatlonal and progressive motions. In purely progressive
motion centrifugel force does not exist, as here the radial acceleration
(of the Coriolis type) is nil. '

The appearance of shock forces ln any actual hydrsulic or aerody-
namic device is, in general, unavoidable. When the f£luid (either gas or
liquid) stream strikes & rigid wall, either fixed or in motion, the shock
force appears in the form of a reaction of the wall, and this is, of
course, an external force, relative to the stream. The same reaction
may occur if the 1liquid stream strikes another liquid stream, which will
produce a reaction force external to ‘the former liquid stream.

As is seen, the general equstion of motion (eq. (3)) is independent
of both cross section A and its changes in space and time, provided,
a8 has already been pointed out, the flow veln 1s sufficlently thin.

Equation (4) is integrable 1f the law of veriation of density with
pressure is known and given. Insofar as gases are concerned, these varia-
tions depend on pressure and tempersture, and therefore the character of
thermodynsmic evolution (i.e., process) must be determined. In the case
of an incompressible fluid, y = Constant = y,, equation (&) is immedi-

gtely lntegrable, gliving
2

X_.g_p _22-=Consta.nt (5)

7o

where the value of the constant 1s to be defined from the initial, final,
or boundary conditions.

The following exemples of mass forces may be cited:

(a) Gravitationel; it acts in the direction of the z-axis (fig. 2)
and is simply

dF = -(pA ds)g

where the negative sign means that the force 1ls directed down. It follows
that X = -gz; thus, for an incompressible fluid,

Q

2 P 2
z + 2 + S = Constant = z_ + — + =2
70 28 70 2g
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(b) Centrifugel; it acts in the dlrection of the radius r and is
proportional to the centrifugal acceleration

a =0’ . _ _

where ® = 2xn/60 is the angular velocity, n designating the mumber
of revolutions per minute. Thus the mass force becomes

daF = {pA ds)a
that is,
X m2r2 ﬁ2n2 -
= = Tr
2 1,800
and therefore
2 2
nn? 2 B _eB_ oo ictant

1,800 7o

This equation is known and spplied to rotating, dynamically acting
machines (turbines, pumps, etc.).

(c) As for the shock force, the case of the exchange of shocks
between the two flowlng liquids, as occurs in a Jet syphon, is the main
object of study of thls paper, and it is discussed 1n deteil in the fol-

lowing section,
INTRODUCTICON T0 NEW THEORY OF JET SYPHON

The mixing of the two currents in an injector (i.e., jet syphon) is
a typlcal example of hydrodynemic shock provided the velocities of the
two currents are initially different, that 1s, provided they are different
at the first moment of the meeting of the two currents. The following
camputation is restricted to the case of an lncompressible fluid in both
currents.

Let the exit of the internal channel I be placed at x = 0 (fig. 3),
where 1ts cross-sectlonal ares is Al' and the velocity is cl'. At the
same cross sectlon the external chemnel E has & cross-sectional srea Al"
and the velocity of the flowlng fluid is c;" #cy'. Both fluids are con-
sldered to be Iincompressible and of the same specific weight 7o°
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As was stated in the "Introduction," a few abstractive, but logically
admissible, assumptions must be made In order to make 1t possible to draw
conclusions from the three general principles of conservation. These
assumptions are as follows:

(1) The two currents are considered to atomize, one into the other,
and to intermingle so perfectly that the exchange of shocks is not only
between the surfaces but also between the two whole masses.

(2) Obviously, the "external" shock force F" acting on the second-
ary fluid, being merely the action of the primary fluid, 1s always in
equilibrium with the "external" shock force F' acting on the primary
fluid, which is merely the action of the secondary fluid; thus, F" = -F!'.

(3) In any given cross section, for example, A, st distance x, the
pressure throughout the cross sectlon, that is, the pressure p' of the
primary fluid, equals the pressure p" of the secondary fluid, as it would
be senseless to assume two different pressures in two fluids which are
perfectly mingled one with the other. However, the corresponding veloci-
ties c¢' and c" are different, until all possible shocks have been
exchanged. This occurs for the first time at cross section A2 at dis-

tance 1, where c' and c" become equal (e.g., c2).

Of course, A = A' + A" and, according to the law of continuity,
the welight oubtputs will be w, and LY defined as follows:

1
W= TAptert = TATe!
w2 - 70A-l"cl“ = YOA“ cll

According to the section "Equation of Motion for a Single Flow," the
mass force 1is

X
aF = 1o AS;dx

that is,
_dj - .P_. - _2 =
Constant
7o

provided that, in general, the cross-sectional ares A 1s variasble with
the channel length x.
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Applying this last equation consecutively to the two currents, one
gets

— - = = 2—~2_ = Constant
Tod A' 7 2g
l d:E'" " C" 2
—f—"—--P—--i—L=Constant
7od A Yo 2g
W.
Differentiating and introducing A' = TWCL' and A" = 2“, as well
70C
o o
as the condition p" = p' = p, give
W W
Fro=-2 32 L g
o ¢ g
Wo d
o= -2 2 22 e
7o ©
As, however, F" = -F', this reduces to
wo W W
%--Er+-é-ﬁ-)dp+gldc'+g—2dc"=0 (6)
o

One of the simplest solutions of this equation is obtained in the
particular case of constant pressure throughout the channel, that 1s,
p = Constant = p,. In this case

no_
wldc'+w2dc =0

w.et + wac" = Constant = wlcl' + wacl" (7)

1

The final velocity 1s here

wie1! + woeg"
= _ Mt 2C1
=tz = W + Vo (8)
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Introducing the conditions of continuity, that is,

- A‘ = Wl
T
7o
W,
- 2
A." = 7 c“
(o]
A=A'+ A"

the followlng expression is obtalned for the channel cross-sectional
area:

_ (wlcl' + chl")wl - (w12 - wez)c'

A
7.’ [(wlcl' + w2°1") - wlc']

(9)

wherefrom it mey be deduced that A diminishes with the diminishing
veloclty c¢' and attains a minimm value wvhen c¢' takes its final value
given by equation (8). The form of the channel may be deduced from equa-
- tion (9) only if an additional assumption is made as to the variatiop of
¢! with the channel length. Of course, the simplest assumption will be
) that c¢' diminishes linearly with the increasing distance x from the
* duct entry, namely,

wz(cl' - cl" )

1 (wl + wa)l *

1 "
o = o +"1(°1 cl)x

1 (wl + WE)Z

where 1@ 1s the total length of the duct.

During the mixing of two currents of inltially different speeds, &
certain loss of energy occurs because of shocks which do not contribute
to the exchange of momentum in the direction of flow. These shocks do
certaln work which finally degenerates into heat (increase of tempera.ture),
the molecular motion induced by these shocks becoming disordered. There-
! fore, the sum of the kinetic and potential energles of the two fluilds
must gradually diminish. This loss may be expressed as
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W. 2 2
AE = [—;g'-(cl') + ;“3("1“) + (wl + wa)-% -
) - )" - ()

Thus, the total energy loss in the injector after the velocity becomes
uniform and equal in the two currents is

3] B 0] f 522
(20)

The total energy of the fluid (kinetic energy plus pressure energy)
is

wi 2 W 2 . (P -P )
Bt = zg(c1') +zg(ta") * (t ) (1)
Thus, the efficiency of the injector will be

AE,
1 Dot
Etot

Ny = (12)

provided the flow and the flulds are perfect, that is, provided no fric-
tion or other losses are involved.

In the particular case of constant pressure throughout the channel,
as quoted above; p = Constant =p_, and

0’
ey’ = o)
tot 2g(wy + w2)
(e e

tot 2g

g = (Faea’ + waey")?

) (1 * w2) [Wl(cl')2 * Wz(cl")e]
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The other partlicular case is a tube of comstant cross section; that
is,

W W, W W.
A'+A"=—l,-+ 2_ - A = Constant = A. = —b_ + —2_
75¢ 7.c" o 751" 75%1"

In this case equation (6) becames easily integrable, as one of the two
unknown velocities, for exsmple, c", may be eliminated. One gets:

o o wacl'cl
( %1 + wzc') - wyeptey
c2' _ 02" e (wl + wa)cl ey

wherefrom
1"
To(ier' + woer")erter” -

g(ll"“"'al)

P =D +

n 2 1 n
7o[l(wlcl + we ( - Wy )cl'cl]cl'cl c!

1')e!
(wlcl' + W e, [ " + W,eq ) ct - wlcl'cl'E]

2
To¥iwger'er”(er! - er”

(wlcl' + wyeq )2

It may be easily demonstrated that the pressure increases steadily
with decreasing c', that is, with the channel length, attaining a maxi-
mum velue at the finsl moment, when c' = c¢" = ¢y, that is, at the end

of the duct. At the same moment, assuming Py = Py»

Pyo=p ¥
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2

2 5
AR, = wl"’eg’l(cl") + w2(°1'_)__](°=1' - ")

2g(wlcl“ + W'acl')2

2
2 4 w2
(" * wz)[‘ewlwz(cl' - o) +(mPrw )Cl'clu]cl'cln
2 5 2
E’l(cl') + wp(ey") ](wlcl“ + wpey')

It may be easily proved that the efficiency is in this case generally
lower than that in the case of the constant-pressure injector as studled
above.

My =

STUDY OF GENERAL CASE

Conslder again the general case, that is, the case in which the duet
cross sectlon varies arbltrarily with i1ts length. In this case the pres-
sure will also vary along the duct and its final value, at the duct end,
will be, in general, different from the initial value. Thus, to get the
desireble final value of the pressure, the usual nozzle (or the usual
diffuser, according to whether Py is greater or less than the desired

value) should be applied.

It should be first remembered that the equation of motion applying
to the general case has already been given as (eq. (6))

1 /%1 WE) w1 w2 "
-{-—-+ —= + —=de!' + — ac¢” =0
Yo\e! c" @ g g ¢

On the other hand, one has the following conditions of continuity of flow:

a =)
7o'
W, ?

R (13)
(o]

A =A' + A"
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where the total cross-sectional area of the duct A 1is arbitrarily
shaped along the duct length (fig. 4):

A = o(x)

Putting equetion (13) into equation (6) and eliminating A", the
following expression is obtained:

2 2
w2 . 1[ Yo w12 apr

—gA(A-A')adA g7o|_(A-A')2_ (a1)2] A

dp

which is not integrable until an addlitlonal hypothesis is made as to
changes of ¢! (i.e., of A') with the duct length. However, the pro-
cedure may be modified as follows: Iet the decision as to possible
changes of ¢! with the duct length be deferred until the mathematical
solution of equation (6) is found (it may be next assumed that, for
instance, c' diminishes linearly with the increasing duct length x),
while 1t is assumed filrst that the followlng relation

A= y(et)
L7
is arbitrarily given instead of A = ¢(x). Denoting EET = ¥, it 1is
found that de
“en-n=2(y -2
e R A\
c“ _ Wec'
cly - Wy
H t
de" =_w2 [(c )2* + Wl] de!
2
(¥ - w)
Substituting into equation (6) gives
2[ 1241
W, +
E+iw - 2-('::)1lI wl] de! =0 (14)

o g¥)] 1 (c"l[f _ Wl)2
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which 1s Ilntegrable, provided the function _ W(c ) is glven. There is
obtained : .

ct Wol a?#'(m) +w
%‘(P'Pl)"'%f W - — 1] | =0 (1)
cl

o [w«lf(m) _ wl]a V(a)

where o 18 arp auxilisry varisble used only for integration.

At the end of the duct, where the total eqpalization of velocities
is first achieved, one should have:

t "

¢ =¢! = ey =ey’ =cp
_ Wl + W2
¥(c2) sl
c w52 a2 '(a) + W
CTOREA DY P e | RS
° %1 [mlf(a) - "1]

It might be easlily shown that both the particular cases as quoted
in the section "Introduction to New Theory of Jet Syphon" (p = Constant
and A = Constant) mey be deduced from equation (14) or (15).

In designing an injector, the aim is to have the grestest possible
efficlency for any glven initisl conditions (Wi’ Wy, c7', and cp"

The form of the function WV¥(e') should, therefore, be so chosen as to
have the greatest possible value of

ol a2yt (o) + w ]
5 Co 2 [ 1
2 7 ah/; T [t (a) - ijE ¥(a)

n; = L= > > (16)
W W
) raeel)

which means that in the numerstor
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W22E12¢'(m) + Wl] o,

Teel.a['2 W, - (17)
a fc ! [Gﬁ{f(ct.) _ W1]2 V(a)

the function V¥ should be so chosen as to have J attaining & maximum.

In order to solve thils problem correctly, the calculus of verlations
should be aspplied. The following discussion 1s based on the theory as
given in reference 1 (ch. XXXIV, pp. 545-600).

The general problem of the calculus of variations is as follows:
A form of the function f£(x) is looked for such thet the integral

X
J =f F(x,y,y') dx
x0

is a maximum, where y = f(x) and y° =-%£, X, &nd Xx; being two con-

stant 1limits of Integration. Such a maximm does not always exist. There
are several conditions for the exlstence of & maximm (or minimum). The
first of these is that the following equation (called Euler's equation)
must be fulfilled:

% .. 3F . d3F
¥ —_—y

————g + +—-?=0
3(z) dy dy*  d:xdy O

In the present specific case the expressions

(&

2 _ 2 \2
cy = JC ' a da + (cl )
1

v = £(x) = ¥(a)

Y w22(x2y' + wy )

F =
J

y(xr - “'1)2

may be substlituted into Buler's equation. The final result



20 NACA TN 3385

¥(a) = —=——=

"

is obviously trivial because it requlires that cl' =cq'.

The conclusion is that no extremum exists 1n the present specifie
case and therefore no form of the function ¥ may be found giving such
an extremm. here 1s no doubt, however, that a certain form of V¥ may
give a higher value of effileciency 17 1 than same other form. Thus, the

alternstive is to try several possible mathematical forms of V¥. These
forms may be chosen so as to meet the simplest mathematical operations
and yet to have a certain degree of generality by introducing a few
arbltrary constants, which could next be so -chosen as to attaln the high~
est value of Ty possible in the specific case.

One of the possible forms may be, for Instance

w.c.' + wae, ! 98
- 171 2°1
¥(ax) = T ()

et e

1 1

vhere u § 0. Ancther 1s
4 - A
T(a) = 7Ry + 0(‘?2 l)(cl' - ct.)

L T %2

where A, = pAy) and p § 1. Furthermore, 1t msy be possible that

¥(a) = a - ba

where a and b are constants.

One more possible form, which is as follows,

¥(a) =a + 2 (18)

(e

will be studled more thoroughly below, as it seems to be relatively very
gimple and to glve satisfactory results. It must be strongly emphasized
here that there 1s no proof whatscever that the form chosen is the best
possible. On the contrary, it is very probeble that other forms of V¥
may be found, which, although probably more-involved mathematiecally, will
glve still higher values of efficlency for the injector.
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STUDY OF SPECIFIC FORM OF DUCE AS ASSUMED BY EQUATION (18)

Assuming the specific duct form (eq. (18))

_ b
¥(a) = a + o
means that
1
A = \F(c ) = i a + lJr
7 % c
Therefore,
W W
Al = l' 2“ = L 8 + —:b—t-
7o%1 7o%1 7o ¢

In addition, it is assumed that

!
>

2

where u 1is an arbitrary constant whose value should be so chosen as to
have the highest value of the efficiency ny under the given circum-~

stances. Thus:

_ (w1 + wo)ey'er”

c2_|.!.W'c"+wc'
(11 21)

p.wa(cl' - cl") (wlcl" + W2°l')

cl'cl" [p.(wlcl" + wacl') - (wl + w2)cl"]

8 =
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B (p - l)(w:L + we)(wlcl" + w2cl')
m(wpey" + wpe T ) - (W + wp)ey”

Substituting the above values into equation (17) and assuming, for
greater simplicity in writing, that

W
_l"'=n1
W1+V2

one gets, after integration,

(°:' Y mA - ,:;2(1 of [nl(l - e )2 - ) - (2 -m)Po] - mP 108, (a + 222)s

- n 50‘ o S - 2¢ - - -a)-
(1 - =)o omg (ﬂﬂ e H)} 2L - 5y)3(1 - oo+ L - my) [znl(l ) - 2 - )

i 2o v 2w (m + 2B+ (2w Plage v 2 - m) 20w, (5o “1)}1+

- o) -1ja+(1 - - -
532 - ‘1)(1"")(1110+1-n3_) {(1 n )2 - [(3:11 1)a +(1 - 0 )3y 2)]

- n:l.) +2(1 - 91)5(“1" +1-m) log, (T];l-_nl')]ff (29)

2ndo(myo + 1 - my) 208, (3

/(cl ) (20)

n, + (l-nl)u

Now the value of p giving the highest value of 1 i should be
found. Equation (20) is of the form

a
= 2 . _Z.
My =81 % m K
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where a,, &p, and az are constants. Thus

h
d 2a a a
The condition Sy =0 will give He == 3, Eni = -2 , and
Ay 8o duz e 8a53
- 2 ;
(ni)e =8 - (ae/lkaB). Thus & maximum of n; will exist only if
afny
E;Er-< 0, that is, if 8z < 0 and, consequently, 8y > 0, because

Be < 0 would have no physical sense.

The correct methematical analysis of the coefficients a, and az

is rather difficult; numericel testing leads, however, to the highly
probable conclusion that 8z may never be negative, that is, 1; nay

never have a mathematical maximum, which means that it tends mathematically
to an infinite positive value at p = O. One, therefore, should look for
the highest value of 1,, in the whole range of physically possible values
of p, which 1s not a mathemstical maximum.

It should be noticed first thet p cannot drop to zero, but it has
a limit

1t
.- (wi + wz)cl _ v
z un 1 -
wicl + chl nlc + 1 n1

at which the duct cross-sectional area will become infinitely large,
except for initial and final values, if the trivial condition c " = c,'

1
is not fulfilled in addition. Thus, it must be asssumed that

(21)

B2 M,

and, therefore, the highest value of Ny corresponds to this limit value
of u.
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Substituting p; as defined by equation (21) into equation (20),
the limit value of the efficlency 1s found:

2
2(1 - n; )" logg (nlo L .nl) +n, (30, - 2)+ 209(1 - my )0

(ni)z ) nla[n:L + (l - nl)oz]

(22)

It may be easlly proved, for the sake of checking, thet, for 0O £ ny £1,
c;' 20, and c4" 2 0, which conditions are physically obvious, the value

is always ('qi) < 1. Substituting, namely, x = - +l-l ——, glves the
l oy .
condition -

(x - 1) [(5 - an)x - l]
2(1 - my )x2

g log, x

To prove that this condition is fulfilled for 0 <x S -l-—l-—, thet is,
for 0 £ 0 £ », it is sufficient to take the first two derivatives of the
two sides of the inequality cited above. This inequality becomes an
equality only for x = 1.

Of course, the extreme case as defined by equations (21) and (22)
1s not actually applicable; some deviation of numerical values must,
therefore, be applied and 174 will become less than (ny )z. In order,

however, to have comparstive figures on hand, the theoretical case of
equetion (22) will be studied numerically below, 1t being compared with
the value ("11 )r as applied in the usual routine now (ref. 2},

2 2
1 "
(wlcl + ey ) i [nl + (1 - nl)o

(ni)r=w+w v (e, )2 + w,fe, ")2 n+(1-n)¢1f]2
(o * () vefer)] P (tom

(23)

It may be easlly proved that always

(n), 2 ()

It 1s sufficlent, for instance, to substitute - L = X, which
nlO' + 1 - nl
leads to the condition

(L
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(x - 1)(3x - 1) >
2x2 -
Taking the two first derivatives of this inequality, one arrives at the
conclusion that x 2 1, which means that ey 2 e . This assumption was
made at the very beginning and remains, of course, valld; therefore, the
assumption that ('qi) 2 (Tli) 1s proved, except for c,' = c;"; that
1 r

is, x =1 wvhen (ni)z = (ni) .
T

loge X

NUMERICAL CQMPUTATION COF EQUATIONS (22) AND (23)

The procedure for the numerical calculation of equations (22) and
(23) is as follows: Take first the routine formula for efficiency (qi) .
Tr

The numerical values of (ni) are given in table I and plotted against
r
n,, for different constant values of o, in figure 5.

As is seen, ( ni) passes through a minimm value, the formuls for
r
which is easily obtaingble by differentiation of equation (23):

hog
("i)rmin 1+ 0)2

for

g
l+co

n
(=)
Numerical values of (ni) are glven in table IT.
Tmin

Turning now to equastion (22) » 1t should be stated that for very

small values of ny the usual calculation based on form (22) is not

sufficlently exmct. Tt is, therefore, better to develop the logarithm
asg follows: :

3
loge[l ~ (j_ U)nl] = (1 - o)ng + %(l - 0)2n12 N %—(1 - o) n15 ...

which gives
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o2 + %(1 o140+ °2)nl + é(l - X1+ 204 jdz)nla +%—(1 - a2 -:-30’4-64;2)1:“._3 +:3-;|-°-(1 -.u)h_(?. + bo + J.Ocrz)n: e

(), = EN e . (ek)

The numerical values of ( N4 )7’ are given in table IIT and plotted
sgalnst n,, for_different constant values of o, in figure 6.

DUCT FORM

In order to determine the duect form, an additional hypothesis as to
changes of c¢' wilith the duct length must he made. As has already been
pointed out in the section "Study of General Case," a possible assumption
is that -‘e' , diminishes linearly with the incressing duct length x (see
fig. 4). Such an assumption seems to be the simplest and, at the same
time, logilcal enocugh. Mathematically, it is equivalent to

c'=—z—lx+cl' (25)

In the particular case as defined by equastion (18) this leads to:

_ac' +b
7qc!

a(c, - eq')x + (acy +.E_)i
70[(c2 - cl')x + cl'Z]

M(wlcl" + wzcl')[-gwlcl“ + wacl')l -V, (cl' - cl")x]

7.1 ey" {p.(wlcl" + wecl')l - [p(wlcl" + wecl') - (wl + wa)cl'il x}

(26)

where p must, of course, be chosen a little larger than the limit value
defined by equstion (21), but close to it, in order to maintain the high-
est possible efficiency. The length @1 will be evaluated according to

practical considerations, as no theory msy be advenced here 1n this con-
nection. The aim is, of course, the thorough mixing with minimm losses
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and the obtaining of complete uniformization of velocity at (or before)
the final cross section.

As for the cross-sectional aree A, it may be assumed in eny form
whatsocever. If a circular cross section 1s assumed, the dliemeter will

be D =VI—L-A.
T

In the 1limit case p
that is,

M, the results become, of course, trivial;

(wy + o)

Cl'

A2 = Constant =

Aoty

n 1

02=cl =c1

The portion 1 of the duct lying between cross sections Al and A2

cannot be regarded, in general, as a whole unit, either in the case of an
injector or in other cases. The reason 1ls that the "final" pressure Pp

is, In general, not equal to p,. Neither does 1t equal the pressure p
> 2 1 Q

of the surroundings. In the case of an Injector used for pumping purposes,
it may be assumed that Py = Pg» while the final pressure should be raised

as high as possible, for exsmple, to P3» by applylng the feasible mini-
mum c5 of the final veloclity. This may be done only by adding a diffuser

extending from Ap %o A3.

The other possible case is a thrust producer., Here not only P = P
but also Pz = Po should be assumed.

In the general case, according to equation (16),

2 2
J = ni(cl') EH‘+ (l - nl)c]
and, according to equations (15a) and (17):
_ _7o 2)
pa—pl—pz-po—-z-g(J-cg

wherefrom

Po = P] =Po - Pg = Z—-Z {ni[nl + (l - nl)dz](cl' )2 - 622} (27)



In the additional diffuser (see fig. T) the pressure is brought back to
Pgys that is, p5 = Pye Thus
| 2 2 2
P35 - Py = ~(Pp - Bo) = 7z 1%2 ~ "1[%1 +(1 - n1)°'](°1')

But, according to Bernoulll's law, if friction and other losses are
disregarded,

Thus:

= cl' Vni[nl + (l - nl)ce] (28)
In the perticular case as defined by equation (18), the value
oeq!
ey = — L —
u[l - (l - o‘)nl]

should be entered into equation (27), and the value of 1, as defined
by equations (19) and (20) should be entered into equation (28).

The area of the final cross section of the diffuser 1s, obviously,

Wy o, W) + Wp

= — (29)

Az = 705 7oy "“1[“1 s (1 - nl)ca]

The particular case of an ejector thrust augmenter with constant-
pressure mixing zone is studied more thoroughly in the appendix.

Ecole Polytechnique (University of Montreal),
Montreal, Quebec, Canade, January 13, 1949.
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APPENDIX
THEORY OF "CONSTANT-PRESSURE" EJECTOR THRUST AUGMENTER

In the computation developed in the main text the case of an injector
has been treated almost exclusively, with the aim of obtaining the dynamic
compression. The ultimate goal has been to get the largest possible total
pressure (i.e., a sum of static pressure and velocity head). The case of
an ejector thrust augmenter is different in that the ultimate goal is to
get the largest possible thrust, depending directly on momentum, under
given initial end final conditions. This case is briefly investigated
theoretically below.

Although the definition of efficiency is a little different in this
case, it remains Intimately related to the final momentum of the mixture
leaving the ejector; therefore, a1l the general remarks concerning the
ejector (mixing zone) throughout the peper remain vaelid. However, as the
investigation of the most general case would be rather involved, it seems
more practical to investigate first the particular case of the ejector,
that is, of the mixing zone, at constent pressure. Therefore formulas (8)
and (9), applying to the mixing zone, will remain valid.

Obviously, if the given initial conditions p.,c.' for the primary
’ o’~o

stream and p,,c," for the secondary stream ere epplied directly at the

ejector exit, that is, if p, =p, ' = Py s 1' =cy', and eq" =,
and if, in addition, p, =p; = Ps (or atmospheric pressure, thus no

diffuser or nozzle st station 2}, there is no thrust augmentation whatso-
ever, because the momentum remasins unchanged. It therefore follows that
the given Initial conditions should be first subject to appropriate changes
if any thrust augmentation is to be obtained with a constant-pressure ejec-~
tor. These changes may be either a prior acceleration (by nozzles) or
deceleration (by diffusers) before the two currents enter the ejector,

with the condition pq' = pl“ = py. OFf course, in such a case a diffuser

(or nozzle) must be applied downstream of the ejector, in order to estab-
lish the desired final pressure p5 =D..

For the given initial conditions p_',c,' and Py sCo" and the
final pressure Pys there exists a certaln value of Py =Po ylelding a

meximum of thrust, which may exceed that obtalned with the primsry stream
alone and wlthout ejector. Of course, these optimel velues of P
W

1

Wl+W2

and Th depend on the mass-flow ratio, that is, on n, =

In order to define the problem further, assume the system as shown
in figure 8, in which the boundary losses in the ejector and the exit
dlffuser are disregarded.
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The given values are: i
P, atmospheric pressure, 1b/sq ft
e, velocity of travel, ft/sec
flow rati b

mass~-flow ratio, ————
o W+ W,
70 specific gravity, lb/cu £t -
H sctual head produced by pump, ft

The value of c.' 1is to be found for (Th) ; thus values of p
1 max 1

and c¢;" will thereby be defined.

The following formulas follow:

om0 3l 6] -2l -]

"o_ 2 55_ - ’ .
¢ = wo + 7O(Po P1)
Wicy "+ Woey” . "
2 T Ew, o % T (1 - my)ey

¢z = ﬁeg - %(Po”' P1)

1
Th = E(wl + wz)(c3 - co)
The (external) propulsive efficiency is _ -

e, ()

Tl =
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If the ejector were not applied, the primary stream alone would produce
the thrust

(1), =

® |-~

Wl( 2§H + 07 - co) = % Wl[;/("l')a - %(Po -7 ) - co:I

Introducing the dimensionless factors

ey = Vs—i pO[nl"l' +(1-m) V{"l')e - 7\2}

c3 _ Eg_ P, J}\E - (01')2 + 002 + l:nlcl' + (l - nl)wdl')Z - 7\2]2

.70
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Moy = 2%2 \l7\2 (crl' 2 + 002 + [nlcl' + (1 - nl) 01')2 - 7\2] - g,

o(2+o ),

As 1g seen, { is a function of four different factors, n;, Oy
and cl'; logleally, they are limlted as follows:

As

o
A
Q
A
8

O

FAN
>
AN
8

o

A
=

A
8

where 1t 1s understood that

7\§UI'§V7\2+602+1

O§n§7\2+ 002+l

a
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and therefore

2 2 2
k-(%? +9 +120

In order to determine the influence of these four factors, the for-
muls for £ should be examined first with respect to each of them sepa-
rately. The condition dg[d.nl = 0 leads to

(Ql)e =0

It may be shown that for n, = o

N R GO

b0 = >1 if <1
1 d 2 2
cro(?\ + 0 < - UO)
except for P, =D, (1.e., A2 = (orl‘)2 - 0'02), or for A = 0 where

gnl=0
the secondary mass flow should be as large as possible.

= 1. This 1s & maximum because, for n, = 1, & =1. Therefore,

The condition dgldcl' = O does not lead to any extremal values,
simply yielding A = O, which does not impose any condition upon Gl' .
It may be shown that, in general, for A = 0O,

ban=0 =1

(qex)x=o =

It may also be shown that, for Py = Po»

ey =1
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as well as that, for nq =0,

(e, o - 2 - T e e n o

Furthermore, { may become very high for small values of a, (the

efficiency being low, however), whereas it attains certain maximum velue
(greater than 1) at a definite value of A. The picture i1s as shown in
figure 9.

Finally, it may be shown, in general, that §{ >1 for O<n <1
and O <« n, < 1.

If the ejector 1s not applied, then = = 1, n, = 1, §° =1,
20,
and (T]ex) =0 Therefore, the ratio of the increase in effi-
© o' +og
1 o

clency by an elector is

€ = Jex
(Mex)
gi' + ¢ 2 2
= .1_7\2__2(\)7\ + 0 - cro)g -
. 2
NCAREY ;2%) ‘l?xz - (0" )P + 0 2 + [n101' + (1 - m)|(or')” - 7‘2] )
n

If the values of crlo' and A,, appllied without the ejector, are going
1o be changed (e.g., A will increase) while 0'0 remains the same, then

-L—[m)[(m]
Ul'+d [q l+ﬂ+[rﬁ-v; +1—I+ l— ‘F +l-t]2-.0‘°}
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In the applications of a centrifugal pump to the dynamic propulsion,
the requirement of a reasonsble efficiency imposes a rather laerge mass
flow while the head should be kept small. This results in huge tubing
dismeters. In order to improve this situation, an ejJector thrust sug-
menter may be applied in such & manner as to keep the efficlency unchanged,
while the pump head A is increased with subsequent reduction in mass
flow, if the power supply remains unchanged. The problem may thus be
defined as follows: For the glven &' = 1, Increase A and change = so
as t0 maintalin a sufficlently high value of thrust, while the velocity of
travel o, remalns unchanged.

The condition €' = 1 leads to

o B(2 - ng)(oy "+ ao):[("lo')a - o2 - nfﬂ {“ia"é R [(2 ) - nﬂd# ¥

(o‘lo' + o'o)zkll- - 3n12)602 - (2 - nl)alo'uo + nla(clo')a]Ra - ll(l - nl)elo' + 0'0)2&0’10')2 - ana]uoa]

wherefrom the functional dependence of = on A may be found for assumed
numerical values of nl, oy ', and oy. The thrust will remain constant
o]

because the power supply remains the ssme; that is, wiozgﬂo = wi2gH.

Therefore,
Wit _ T
d
¥lo50 wio(cl '+ co) A" + 062 - o
2
-l
c 2
v, (o -c
lo( 1, o )
_ WJKZ
- 2
wioko
=1

Let Pg = 2,120 pounds per square foot, Yo = 62.5 pounds per cubic

foot, ¢, = 15 feet per second, K, =15 feet, mn; =1 and n, = 0.25.
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Then o, = 0.320, A, = 0.662, o1, = 0.735, i ' = 34.54 feet per sec-
ond, Wp = 3wi, and
6 L 2
1 - g = 0:01872N" + 0.059UAN + O.OTETA - 0.04L83
0.438 - 0,25\°
oy _ 412 + (1 - n) + 0.102k
0" - 0.T35

The reduction of the exhaust tube will be in proportion

(3

where
N2
2

Some celculsted values of 1 -3 and ® for given values of A
are presented ir the following table:

1 G 0.438 | 0.5 0.6 |o.7 |o0.8 0.9 1.0 |1.1

1-=x 0 0.0342| 0.090| 0.169} 0.269 | o.kOk | 0.585 | 0.836

wl/wlo 1 0.876 o.#3o 0.626 | 0.5475 | 0.4865| 0.438 | 0.398

cl'/ol 11 1.086 | 1.210| 1.340] 1.472 |1.613 | 1.766| 1.941
Q

5 1 0.898 | 0.776| 0.68k q.610 0.549 0.498 | 0.4527

For the same assumptions but with ny = 0.2,

_ 0.01124k6 + o.ososxu + 0.0779EA2 - 0.04483

0.438 - 0.2\°

l-x
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for the following values of 7\2:
22 o0.438] 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
1-x o 0.0244 | 0.0722 | 0.2289] 0.2002 | 0.2896 | 0.400 | 0.539| 0.723 | 0.9%9
wl/wlo 1 0.876 | 0.730 | 0.626 | 0.5475 | 0.4865 | 0.438 | 0.398 | 0.3648 | 0.3368
ot /"10' i 1.078 | 1.196 |1.312 | 1.%29 | 1.547 |1.668 |21.795|1.9%0 |2.080
) 1 0,902 | 0.782 ]0.650 | 0.619 | 0.559 |0.5125| o.k71| 0.435 |0.4025
Finally, for n, = O.k4,
6 4 2
1 - g = 2:0599\° + 0.0689A" + 0.061A" - 0.0L4483
0.438 - 0.1\2
for the following values of 1
A2 0.438 | 0.5 0.6 0.7 0.8 0.85
l-x 0 0.0436 0.14891 0.3%02 0.667 0.955
wl/wlo ‘1 0.876 0.750 0.626 0.5475 0.5150
Ul'/c’lo' 1 1.093 1.256 | 1.4 1.704 1.877
S 1 0.8%5 0.7625 | 0.658 0.566 0.524

The gbove numerical results are presented graphically in fig-

ures 10(a) asnd 10(b).
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TABIE I

VAIUES OF (ni_)r

2 (ns),

o 0 0.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.000
0.1 | 1.000 [0.331 | 0.3768 [ 0446 | 0.5215| 0.599 [ 0.678 |0.758 | 0.838 | 0.919 | 1.000
0.2 | 1.000 | 0.5T6 | 0.5585 | 0.590 | 0.6375 | 0.6925 | 0,750 | 0.811L | 0.87h 0.956 1.000
0.5 | 1.000|0.756 |0.722 |0.726 | 0.741 | 0,715 | 0.815 | 0.858 | 0.904 | c.952 | 1.000
0.4 | 1,000 0.8675 ) 0.825 | 0.8165] 0.826 | 0.844510.870 [0.809 | 0.931 | 0,965 | 1.000
0.5 | 1.000|0.951L [0.900 |0.890 |0.891 | 0.900 | 0.915 | 0.9325| 0.953 | 0.975 | 1.000
0.6 | 1.000 [ 0.966 | 0.9475{0.9%9 | 0.938 | 0.9415{ 0.9%9 | 0.958 | 0.970 | 0.985 | 1.000
0.7 | 2.000|0.985 |0.95 |0.970 | 0.969 | 0.970 | 0.973 | 0.977 | 0.98% | 0.9915 ] 1.000
0.8 | 1.000 [0.995 | 0.9915 {0.9885| 0.988 | 0.988 | 0.9885| 0.990 | 0.995 | 0.996 | 1.000
0.9 | 1.000 | 0.9985 | 0.998 | 0.9975| 0.9972| 0.997 | 0.9975| 0.998 | 0.9985| 0.999 | 1.000
1,0 | 1.000{21.000 | 1.000 | 1,000 | 1.000 | 1,000 |21.000 | 2.000 | 1.000 | 1,000 | 1.000

et NI VOVN

6¢




WINTMIM VALUES OF (7, )

TABLE II

g 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00
(nl)e 0.0909 | 0.1667 | 0.2308 | 0.286 | 0.3333| 0.375 | 0.412| 0,445 | 0,474 | 0.500
(“1) 0.3306 | 0,556 | 0.710 | 0.816 0.9375 | 0.969 | 0.9875 | 0.997 | 1.000

0.889

GREC NIL VDWN




1.0000

o 0 0.1 0.2 0.3 0.k 0.5 0.6 0.8 0.9 1.00
0 0.666(6) | 0.68L0 | 0.7030{ 0.7235 | 0. 7460 [ 0.7720 | 0.8015 | 0.8355 | 0.8770 | 0.9270 | 1.0000
0.1 | 1.0000 |0.7200{0.72%0 0.7380 | 0.7575 | 0.7825 | 0.8125 | 0.8460 | 0.8840 | 0.9220 | 1.0000
0.2 | 1.,0000 0.7930 | 0.7726] 0.7768 | 0.7890 | 0.8092 | 0.8350 | 0.8650 [ 0.9008 | 0.9444 | 1,0000
0.3 | 1.0000 0.8686 | 0.8375 | 0.8250 | 0.8315 | 0.8470 086;; 0.8900 | 0.9200 | 0.9565 | 1.0000
0.4 | 1.0000 0.9170 | 0.8880 | 0.8760 | 0.8760 | 0.8840 | 0.8970 | 0.9164 | 0.9400 | 0.9685 | 1.0000
0.5 | 1,0000 0.9520 | 0.9285 | 0.9180 | 0.9170 | 0.921% | 0.9200 | 0. 9412 | 0.9560 | 0.9765 | 1.0000
70.6 1.0000 0.9740 | 0.9600 | 0.5520 | 0.9495 | 0.9500 | 0.9550 | 0.9622 | 0.9720 | 0.9850 | 1.0000
0.7 | 1.0000 |0.9770 | 0.9790 0975009725 0.9726 | 0.9750 | 0.9790 | 0.9840 | 0.9915 | 1.0000
0.8 | 1.0000 |0.9950] 0.9910| 0.989% | 0.9880 | 0.9880 | 0.9890 | 0.9910 | 0.9935 | 0.9965 | 1.0000
0.9 | 1.0000 |0.9990 | 0.9975 | 0.9960 | 0.9955 | 0.9960 | 0.5965 | 0.9980 | 0.9985 | 0.9990 | 1.0000

1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000

GRee NI VOWN

T
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Z TA*‘{,‘Ads
| P P+§§a’s
c C"‘%ds
P P+2Lds

Figure 1l.- Infinitesimal element of a flow vein.
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Flgure 2.~ A flow veln in gravitstional field.
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Figure 3.- INlustretive diagrem of Jjet syphon.
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Figure 4.- Arbitrarily shaped mixing zone of jet syphon.
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Figure 5.- Graphical representation of injector efficlency as computed
with conventional formula.
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Figure 6.- A case of injector efficiency as computed according to new
theory.
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Figure 7.~ Illustrative dlagram of ejector thrust augmenter.
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Filgure 8.- Illustrative diagram of constant-pressure ejector- thrust
augmenter.
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Figure 9.- Graph for efficiency and thrust of comstant-pressure ejector
thrust augmenter.
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(a) Variation of 0'1'/0'0, 5, and A with =x.

Figure 10.~ Dimensionless cheracteristics of constant-pressure ejector
thrust augmenter.
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Figure 10.- Concluded.
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